HARNESSING THE POTENTIAL OF ASTAXANTHIN FROM Haematococcus pluvialis IN BIOMEDICAL SCIENCE: A NARRATIVE REVIEW
DOI:
https://doi.org/10.34310/bp77ad50Abstract
Astaxanthin merupakan karotenoid bernilai tinggi dengan berbagai aplikasi, salah satunya dalam bidang ilmu biomedis. Haematococcus pluvialis dianggap sebagai sumber astaxanthin alami yang paling menjanjikan karena dapat mengakumulasi hingga 5% dari berat keringnya dalam kondisi yang penuh tekanan. Potensi aplikasi astaxanthin dalam biomedis sangat luas. Dari efek neuroprotektif hingga sifat antikanker dan manfaat kardiovaskularnya, astaxanthin telah menunjukkan janji dalam mengatasi beberapa tantangan kesehatan yang paling mendesak. Selain itu, sifat antiinflamasinya dan kemampuannya untuk memodulasi berbagai jalur pensinyalan semakin menggarisbawahi potensinya sebagai agen terapeutik. Tinjauan naratif ini memberikan sintesis komprehensif dari penelitian terkini tentang astaxanthin, merinci sifat biologisnya, tantangan budidaya, dan aplikasi terapeutik yang luas. Wawasan utama meliputi efek neuroprotektif, antiinflamasi, antikanker, dan kardioprotektifnya, yang didukung oleh struktur molekulnya yang unik dan sifat amfifiliknya. Dengan mengevaluasi secara kritis kemajuan terkini dalam teknik budidaya, ekstraksi, dan formulasi, tinjauan ini mengidentifikasi keterbatasan saat ini dan menguraikan berbagai kemungkinan untuk penelitian di masa mendatang. Secara keseluruhan, astaxanthin merupakan agen multifaset dengan potensi klinis yang signifikan, yang memerlukan penelitian lebih lanjut untuk mengoptimalkan bioavailabilitas dan kemanjuran terapeutiknya..
Kata kunci: Astaxanthin; Haematococcus pluvialis; Antioksidan; Aplikasi biomedis
ABSTRACT
Astaxanthin is a high-value carotenoid with various applications, one of which is in biomedical science. Haematococcus pluvialis is considered the most promising source of natural astaxanthin as it can accumulate up to 5% of its dry weight under stressful conditions. The potential applications of astaxanthin in biomedicine are vast. From its neuroprotective effects to its anticancer properties and cardiovascular benefits, astaxanthin has shown promise in addressing some of the most pressing health challenges. Moreover, its anti-inflammatory properties and ability to modulate various signaling pathways further underscore its potential as a therapeutic agent. This narrative review provides a comprehensive synthesis of current research on astaxanthin, detailing its biological properties, cultivation challenges, and wide-ranging therapeutic applications. Key insights include its neuroprotective, anti-inflammatory, anti-cancer, and cardioprotective effects, underpinned by its unique molecular structure and amphiphilic nature. By critically evaluating recent advancements in cultivation, extraction, and formulation techniques, this review identifies current limitations and outlines potential avenues for future research. Overall, astaxanthin represents a multifaceted agent with significant clinical potential, warranting further studies to optimize its bioavailability and therapeutic efficacy.
Keywords: Astaxanthin; Haematococcus pluvialis; Antioxidant; Biomedical applications
References
Abdelazim, K., Ghit, A., Assal, D., Dorra, N., Noby, N., & Khattab, S. N. (2023). Production and therapeutic use of astaxanthin in the nanotechnology era. Pharmacological Reports, 75(4), 771–790. https://doi.org/10.1007/s43440-023-00488-y
Azli, R., Mokhtar, M., Shapawi, R., & Huda, N. (2021). Haematococcus pluvialis as a Potential Source of Astaxanthin with Diverse Applications in Industrial Sectors : Current Research and Future Directions. Molecules, 26(21), 6470. https://doi.org/doi: 10.3390/molecules26216470
Bauer, A., & Minceva, M. (2021). Techno ‑ economic analysis of a new downstream process for the production of astaxanthin from the microalgae Haematococcus pluvialis. Bioresources and Bioprocessing, 8, 111. https://doi.org/10.1186/s40643-021-00463-6
Bjørklund, G., Gasmi, A., Lenchyk, L., Shanaida, M., Zafar, S., Mujawdiya, P. K., Lysiuk, R., Antonyak, H., Noor, S., & Akram, M. (2022). The Role of Astaxanthin as a Nutraceutical in Health and Age-Related Conditions. Molecules, 27, 7167. https://doi.org/https://doi.org/10.3390/ molecules27217167 Academic
Choi, H. D., Youn, Y. K., & Shin, W. G. (2011). Positive Effects of Astaxanthin on Lipid Profiles and Oxidative Stress in Overweight Subjects. Plant Foods for Human Nutrition, 66(4), 363–369. https://doi.org/10.1007/s11130-011-0258-9
Dong, S., Huang, Y., Zhang, R., Wang, S., & Liu, Y. (2014). Four Different Methods Comparison for Extraction of Astaxanthin from Green Alga Haematococcus pluvialis. The Scientific World Journal, 2014(694305). https://doi.org/10.1155/2014/694305
Fakhri, S., Aneva, I. Y., & Farzaei, M. H. (2019). The Neuroprotective Effects of Astaxanthin: Therapeutic Targets and Clinical Perspective. Molecules, 24, 2640. https://doi.org/doi:10.3390/molecules24142640
Faraone, I., Sinisgalli, C., Ostuni, A., Francesca, M., Carmosino, M., Milella, L., Russo, D., Labanca, F., & Khan, H. (2020). Astaxanthin anticancer e ff ects are mediated through multiple molecular mechanisms : A systematic review. Pharmacological Research, 155. https://doi.org/10.1016/j.phrs.2020.104689
Gencer, Ö., & Turan, G. (2025). Enhancing biomass and lipid productivities of Haematococcus pluvialis for industrial raw materials products. Biotechnology for Biofuels and Bioproducts, 18(8). https://doi.org/10.1186/s13068-025-02604-x
Gherabli, A., Grimi, N., Lemaire, J., & Lebovka, N. (2023). Extraction of Valuable Biomolecules from the Microalga. Molecules, 28, 2089. https://doi.org/https://doi.org/10.3390/ molecules28052089
Hu, Q., Huang, D., Li, A., Hu, Z., Gao, Z., Yang, Y., & Wang, C. (2021). Transcriptome-based analysis of the effects of salicylic acid and high light on lipid and astaxanthin accumulation in Haematococcus pluvialis. Biotechnology for Biofuels, 14(82), 1–20. https://doi.org/10.1186/s13068-021-01933-x
Ip, P., Wong, K., & Chen, F. (2004). Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Process Biochemistry, 39, 1761–1766. https://doi.org/10.1016/j.procbio.2003.08.003
Jannel, S., Caro, Y., Bermudes, M., & Petit, T. (2020). Novel Insights into the Biotechnological Production of Haematococcus pluvialis -Derived Astaxanthin : Advances and Key Challenges to Allow Its Industrial Use as Novel Food Ingredient. Journal of Marine Science and Engineering Review, 8(10). https://doi.org/10.3390/jmse8100789
Kumar, A., Sunil, V., Chen, C., Singh, A., Kumar, P., Pralhad, A., Huang, C., Dong, C., & Rani, R. (2022). Recent advancements in astaxanthin production from microalgae : A review. Bioresource Technology, 364(2022), 128030. https://doi.org/10.1016/j.biortech.2022.128030
Mascia, F., Girolomoni, L., Alcocer, M. J. P., Bargigia, I., Cazzaniga, S., Cerullo, G., Andrea, C. D., & Ballottari, M. (2017). Functional analysis of photosynthetic pigment binding complexes in the green alga Haematococcus pluvialis reveals distribution of astaxanthin in Photosystems. Scientific Reports, 7, 16319. https://doi.org/10.1038/s41598-017-16641-6
Mccall, B., Mcpartland, C. K., Moore, R., Frank-kamenetskii, A., & Booth, B. W. (2018). Effects of Astaxanthin on the Proliferation and Migration of Breast Cancer Cells In Vitro. Antioxidants, 7(135), 1–8. https://doi.org/10.3390/antiox7100135
Mularczyk, M., Michalak, I., & Marycz, K. (2020). Astaxanthin and other Nutrients from Haematococcus pluvialis—Multifunctional Applications. Marine Drugs, 18(9), 459.
Mussagy, C. U., Kot, A., Dufossé, L., Gonçalves, C. N. D. P., Pereira, J. F. B., Santos, V. C., Vijaya, E., Adalberto, R., & Jr, P. (2023). Microbial astaxanthin : from bioprocessing to the market recognition. Applied Microbiology and Biotechnology, 107(13), 4199–4215. https://doi.org/10.1007/s00253-023-12586-1
Nur, S., Oslan, H., Shoparwe, N. F., Yusoff, A. H., Rahim, A. A., Chang, C. S., Tan, J. S., Oslan, S. N., Arumugam, K., Ariff, A. Bin, Sulaiman, A. Z., & Mohamed, M. S. (2021). A Review on Haematococcus pluvialis Bioprocess Optimization of Green and Red Stage Culture Conditions for the Production of Natural Astaxanthin. Biomolecules, 11(2), 256. https://doi.org/10.3390/biom11020256
Octarya, Z., Nugroho, T. T., Nurulita, Y., & Saryono. (2022). Molecular Identification, GC-MS Analysis of Bioactive Compounds and Antimicrobial Activity of Thermophilic Bacteria Derived from West Sumatra Hot-Spring Indonesia. HAYATI Journal of Biosciences, 29(4), 549–561. https://doi.org/10.4308/hjb.29.4.549-561
Putri, D. S., Sari, D. A., & Zuhdia, L. D. (2020). Flocculants Optimization In Harvesting Freshwater Microalgae Haematococcus pluvialis. Jurnal Kimia Riset, 5(1), 49–54.
Rajasekar, J., Kumar, M., & Vallikannan, B. (2019). A critical review on anti-angiogenic property of phytochemicals. The Journal of Nutritional Biochemistry, 71, 1–15. https://doi.org/10.1016/j.jnutbio.2019.04.006
Ren, Y., Deng, J., Huang, J., Wu, Z., & Yi, L. (2021). Using green alga Haematococcus pluvialis for astaxanthin and lipid co-production : Advances and outlook. Bioresource Technology, 340, 125736. https://doi.org/10.1016/j.biortech.2021.125736
Rizzo, A., Ross, M. E., Norici, A., & Jesus, B. (2022). A Two-Step Process for Improved Biomass Production and Non-Destructive Astaxanthin and Carotenoids Accumulation in Haematococcus pluvialis. Applied Sciences, 12(3). https://doi.org/https://doi.org/10.3390/app12031261
Si, P., & Zhu, C. (2022). Biological and neurological activities of astaxanthin (Review). Molecular Medicine Reports, 26(300). https://doi.org/10.3892/mmr.2022.12816
Menu






